Del, , Google Plus, Pinterest,

Print

Posted in:

Optimal ortopedisk behandling av den hardt skadde pasienten

Behandlingen av alvorlig skadde pasienter har endret seg drastisk i løpet av de siste tiårene. Framskrittene i den prehospitale medisin, resuscitering, intensivmedisin og på implantatsiden har bidratt til bedret behandling av den hardt skadde pasienten, som er i "fysiologisk krise" etter traumet, utsatt for multiorgansvikt og død.

Figur 1. Ekstern fiksasjon brukes i DCO som midlertidig, men effektiv frakturstabilisering.

 

Utviklingen av en mer standardisert frakturbehandling i 1950- og 60 årene og implementering av Advanced Trauma Life Support (ATLS) trening har vært viktige insitamenter til endring i multitraume-behandlingen (1). De senere års utvikling i molekylærbiologi og genetikk har endret vår forståelse for mekanismene bak de alvorligste komplikasjonene etter store traumer.

 

“Save Life – Limit Disability”

Det grunnleggende konseptet i multitraume-behandlingen, “save life – limit disability”, har ikke endret seg, men metoder og timing for intervensjon har blitt gradvis modifisert. Denne oversikts-artikkelen oppsummerer utviklingen av konseptene “early total care” og “damage control” ortopedi, og skisserer disse behandlingsmodalitetenes roller i behandlingen av den hardt skadde pasienten med ortopediske skader.

 

Historisk perspektiv
Meurice Sinclair viste allerede rett etter første verdenskrig at umiddelbar stabilisering av åpne femurfrakturer etter skuddskade med Thomas-splint-lignende skinner som tillot mobilisering, reduserte mortaliteten hos soldatene fra 80% til 7% (2). Allikevel ble ortopediske skader hos mutitraumatiserte pasienter stort sett behandlet med strekk og sengeleie i første halvdel av 1900-tallet. Den multitraumatiserte pasienten ble sett på som altfor fysiologisk ustabil til å tåle større ortopediske inngrep og mange kirurger fryktet fettembolisyndromet, som ble antatt å være en komplikasjon til manipulering av brudd i lange rørknokler, med frislipp av fett og annet intramedullært innhold til systemsirkulasjonen (3, 4). Tidlige operasjoner ble derfor unngått og pasientene ble passivisert i langvarig sengeleie med gips eller strekk. Konsekvensene av dette var høy morbiditet og mortalitet som følge av pneumoni, lungesvikt, dyp venetrombose, lungeemboli, muskelatrofi og trykksår (5).

 

Fram til langt utover 1960- tallet ble brudd i lange rørknokler således ikke rutinemessig kirurgisk stabilisert. I denne perioden utviklet imidlertid AO-gruppen standardiserte metoder for stabilisering av brudd i de lange rørknoklene (6) og den medisinske behandlingen av de hardt skadde pasientene endret seg raskt. En rekke publikasjoner utover 1970 og -80 tallet kunne påvise at tidlig operativ stabilisering av frakturer dramatisk senket forekomsten av lungesvikt og andre komplikasjoner hos traumepasienten (7), og bedret overlevelsen (8, 9).

 

Tidligere antagelser om at den hardt skadde pasienten var for syk til å bli operert på, ble raskt erstattet av den motsatte holdning; den hardt skadde pasienten var for syk til ikke å bli operert på. Denne filosofien for behandling av hardt skadde pasienter fikk navnet “early total care” (ETC).

 

“Early total care”
Riska et al. observerte at tidlig frakturstabilisering og rask mobilisering av traumepasientene førte til at forekomsten av fettembolisyndrom, trykksår, muskelatrofi, leddstivhet og mortalitet sank (7). Johnson viste at forsinket stabilisering av femurfrakturer utover 24 timer var assosiert med en femdobling av ARDS-forekomsten og de fordelaktige effektene av tidlig frakturstabilisering var mest uttalte hos de hardest skadde pasientene (10). Det ble også påvist en korrelasjon mellom ARDS og mortalitet, kanskje som uttrykk for at pasientene med høyest ISS hyppigst utvikler lungekomplikasjoner. I en randomisert, kontrollert studie fra 1989 viste Bone et al. at tidlig stabili-sering av brudd i femur senket morbid-iteten og ga kortere sykehusopphold for traumepasienten (11).

 

ETC ble standarden for behandling av den multitraumatiserte pasienten og framskritt i intensivmedisinen støttet denne mer aggressive tilnærmingen. Strategien representerte et betydelig framskritt i traumebehandlingen; pasientene kunne utskrives tidligere fra sykehus, med lavere mortalitet og mindre morbiditet knyttet til sine skader.

 

ETC-konseptet har, noe uheldig, blitt forstått som at alvorlig multitraumatiserte pasienter skal utsettes for definitiv ortopedisk behandling av alle sine frakturer umiddelbart. Her er det verdt å merke seg at de sentrale publikasjonene vesentlig omhandler tidlig stabilisering av frakturer i de lange rørknoklene, enten med interne metoder (plater eller margnagler) eller ekstern fiksasjon. Frakturer perifert i ekstremitetene er i liten grad omhandlet, men de fleste forfattere later til å ha behandlet disse initialt med ekstern fiksasjon eller gips-stabilisering, mens endelige osteosynteser oftest ble gjort når pasientens tilstand ellers tillot det. Frakturer i akseskjelettet, som rygg og bekken, er også i mindre grad omhandlet i ETC-publikasjonene. Disse må allikevel inngå i ETC-konseptet ved at de stabiliseres raskt med interne osteosynteser for å lette traumepasientens mobilisering.

 

 

“Borderline”- pasienten
Tross gode resultater med ETC har erfarne traumatologer i mange år erkjent at en del av de aller hardest skadde pasientene ikke tåler den påkjenningen initial omfattende ortopedisk bruddkirurgi medfører. På slutten av 1980-tallet og utover på 90-tallet ble det beskrevet en del uventede komplikasjoner som følge av tidlig frakturstabilisering med margnagler. Det ble hevdet at fiksasjonsmetoden, “reamet” margnagling av femurfraktur, kunne provosere lungekomplikasjoner, snarere enn å forhindre dem. Traumepasienten med alvorlig hemodynamisk påvirkning og assosierte skader i thorax, abdomen og hjerne så ut til å være spesielt utsatt (12-14), selv om andre forfattere ikke kunne bekrefte slike sammenhenger (5, 15).

 

På bakgrunn av en retrospektiv studie av multitraumepasienter med ISS>18, hvor lungekomplikasjoner ble assosiert til skadegrad, thoraxskade og “reamet” margnagling av femurfraktur (14, 16) lanserte Pape begrepet “borderline”-pasient, for å identifisere en mellomgruppe pasienter som tolererer ETC dårlig. Mer detaljerte beskrivelser av risikofaktorer for uventede komplikasjoner ved ETC ble etter hvert identifisert (Tabell 1). Den kliniske anvendelsen av “borderline”-begrepet har vært omdiskutert, men mange traumesentra har allikevel brukt dette som rettesnor for hvilke pasienter som bør vurderes for “damage control”-ortopedi (DCO).

 

“Damage control”-ortopedi
Ustabile pasienter og i noen grad “borderline”-pasientene har altså økt risiko for komplikasjoner ved ETC. Alvorlig skade utløser en systemisk inflammatorisk respons (SIRS) som direkte kan føre til multiorgansvikt (MOF) hvis den er alvorlig nok (“one- hit model”). Hvis den inflammatoriske responsen er mildere, induseres en subklinisk organdysfunksjon, som imidlertid kan manifesteres i fulminant MOF ved tilleggstraumer, som større kirurgiske inngrep (“two-hit model”) (17, 18). Det antas også at en systemisk immunsuppresjon tilkommer som resultat av negativ feedback til SIRS, referert til som “compensatory anti-inflammatory response syndrome” (CARS) (17). En hårfin balanse mellom SIRS og CARS er åpenbart nødvendig for å indusere normal vevsreparasjon og forhindre sekundær vevsskade og infeksjon.

 

Enhver kirurgisk prosedyre utført tidlig etter traume, altså et “second hit”, har således et potensiale for å føre traumepasienten ut i en irreversibel organsvikt, og ETC-konseptet kan derfor i ytterste konsekvens øke komplikasjonsfaren hos utsatte pasientgrupper.

 

På denne bakgrunnen ble konseptet “damage control orthopaedics” (DCO) skissert av Scalea et al. (19) som en 3-stegs modell i behandlingen av ortopediske skader hos den alvorlig multi-traumatiserte pasienten:

 

1. Initialt utføres resuscitering og blødningskontroll, med temporær stabilisering av ustabile frakturer.
2. Det neste stadiet involverer fortsatt  resuscitering og optimalisering av pasientens tilstand i intensivavdelingen.
3. I det tredje stadiet utføres endelig ortopedisk frakturbehandling, når pasientens tilstand for øvrig tillater det.

 

Den vanlige teknikken for initial, midlertidig frakturstabilisering er bruk av ekstern fiksasjon. Dette er raske og minimalt invasive teknikker som gir effektiv frakturstabilisering og utgjør et minimalt biologisk stress (second hit) for pasienten (Fig. 1), men som likevel tillater umiddelbar mobilisering/ flytting av pasienten, og gir rom for andre tidlige kirurgiske inngrep. Endelige ortopediske prosedyrer, oftest interne osteosynteser, kan være omfattende og ofte tidkrevende, og utføres først når pasientens tilstand for øvrig tillater det. Denne trinnvise ortopediske tilnærmingen til den hardt skadde pasienten har vist seg å være effektiv og sikker. Allikevel er øket overlevelse sammenlignet med ETC- konseptet ikke vist i kliniske studier, sannsynligvis på bakgrunn av åpenbare metodologiske problemer (19-21).

 

 

Okkult hypoperfusjon
Pasienter som skal gjennomgå ETC med langvarige bruddkirurgi må være adekvat resuscitert (tabell 2); Okkult vevs-hypoperfusjon har betydning for prognosen etter frakturbehandling hos den hardt skadde pasienten. Lactat er et biprodukt av anaerob metabolisme og korrelerer godt med vevshypoperfusjon og reversering av blødningssjokk (22), og med mortalitet hos den sirkulatorisk stabile traumepasienten (23). Crowl viste at okkult hypoperfusjon i form av høyt laktatnivå var assosiert med høy forekomst av komplikasjoner etter initial margnagling av femurfrakturer hos hardt skadde pasienter (24), og Morshed støttet dette senere (25).

 

Frakturbehandling ved samtidig alvorlig hodeskade
Initialbehandlingen av frakturer hos multitraumepasienten med ledsagende alvorlig hodeskade har vært kontroversiell. Den initiale hodeskaden kan åpenbart forverres av hypotensjon, hypoksi og øket ICP, som regelmessig sees etter større kirurgiske inngrep. Jaicks (26) påviste at hodeskaden gjør disse pasientene mer utsatt for hypoxi og hypotensjon under operativ bruddbehandling, men uten å kunne vise forskjell i nevrologiske komplikasjoner mellom pasienter som ble tidlig eller forsinket fiksert for sine femurfrakturer. Heller ikke andre forfattere har kunnet vise dette (27, 28). Anbefalingene i litteraturen er derfor sprikende; Giannodis og medarbeidere anbefalte individualisert behandling for hver enkelt pasient (29), mens Flierl anbefalte en mer restriktiv linje hvor DCO ble applisert på alle pasienter med alvorlige hodeskader med initial GCS<8 eller signifikante CT-funn som ødem, midtlinjeforskyvning, sub/ epidural blødning (30).

 

Figur 2. Diagram med protokoll for behandling (ETC eller DCO) av alvorlige brudd hos multitraumepasienter. Hos borderline- pasienten kan overgang fra ETC til DCO bli nødvendig når som helst under prodyrene. Modifisert etter Giannoudis (1).

 

Når skal eksterne fiksasjoner konverteres?
Tidspunktet for konvertering av midlertidige fiksasjoner til endelige osteosynteser og endelige rekonstruksjoner av større ledd, for eksempel acetabulum, har vær kontroversielt. Pape har i en klinisk studie vist at traumepasienter som ble operert med endelige osteosynteser på dag 2-4 etter skaden utviklet en øket inflammatorisk respons sammenlignet med pasientene som ble operert mellom dag 5 og 8 (31). De rapporterte en signifikant sammenheng mellom høyt initialt IL-6, sekundær kirurgi på dag 2-4 og utvikling av MOF og konkluderte med at det var gunstig å avvente endelige frakturfiksasjoner hos pasienter med høyt initialt IL-6 til etter dag 4. Analyser av IL-6 og andre markører har imidlertid ikke nådd noen større utbredelse, og andre kriterier for å bestemme optimalt tidspunkt for konvertering til endelige osteosynteser er basert mer på klinisk erfaring enn tilgjengelig litteratur. I den praktiske hverdag er dette oftest etter dag 4, så raskt som sirkulasjon, respirasjon, infeksjonsstatus, bløtdelsstatus etc. tillater det. Når pasienten begynner å kvittere væske (ofte dag 3-6), er det et godt tegn på at SIRS-reaksjonen er på retur, og det kan være et velegnet tids-punkt for endelig kirurgi.

 

En viss bekymring har også vært knyttet til en evt. økt sjanse for infeksjon etter DCO hos traumepasienten; det har imidlertid ikke kunnet vises i kliniske studier. Allikevel kan en fra studier på pasienter med isolerte brudd i lange rørknokler anta at det er gunstig å konvertere den eksterne fiksasjonen til intern osteosyntese innenfor ca 2 uker etter skaden, da senere konvertering kan øke infeksjonsfaren (32).

 

Kliniske retningslinjer
Den multitraumatiserte pasientens samlede skadegrad og klinisk-fysiologiske tilstand er de viktigste faktorene for å bestemme strategi for håndteringen av de ortopediske skadene. En rekke forskjellige algoritmer er utviklet for behandlingen av brudd hos traumepasienter, særlig for brudd i bekken og lange rørknokler (1, 33, 34) (Fig. 2). For den stabile multitraumepasienten med femurfraktur og evt. andre brudd, men uten alvorlig thorax- eller hodeskade, er ETC å foretrekke. Prosedyrene kan gjennomføres trygt innenfor de første 24 timer forutsatt at normalt aksepterte endepunkter for resuscitering er oppnådd (Tabell 2). Margnagling av femurfraktur gjennomføres, sammen med operativ stabilisering av evt. frakturer i rygg og bekken. Nødvendige bløtdelsrevisjoner gjennomføres, og perifere ekstremitetsfrakturer kan opereres ferdig så sant pasienten forblir stabil.

 

For “borderline”-pasienten kan ETC- konseptet fremdeles appliseres, men med forsiktighet. God kommunikasjon med anestesipersonellet er helt essensielt under langvarige prosedyrer; ved tegn på hypoperfusjon (acidose, økt lactat), hypotermi og koagulasjonsforstyrrelser (“triad of death”) skal ETC-strategien forlates til fordel for DCO. Pasientens øvrige frakturer skal da fikseres eksternt og pasienten returnere til intensivavdelingen for videre resuscitering.

 

< >Hos den ustabile pasienten og pasienten “in extremis” kan DCO være livreddende. Enhver kirurgisk intervensjon må være rask, enkel og vel gjennomført. Nødvendig bløtdelsbehandling, som for eksempel fasciotomi og ekstern fiksasjon av frakturer, kan i denne situasjonen gjennomføres i akuttmottak, på operasjonsstue eller på intensivavdelingen, avhengig av behandlingen av de øvrige skadene.

 

Ved assosiert alvorlig hodeskade bør ICP-måler innlegges tidlig og behandlingen av større frakturer gjennomføres i samråd med nevrokirurg.

 

Konklusjoner
Beslutningene vedrørende initiale og sekundære operasjoner for stabilisering av brudd hos hardt skadde pasienter må tas etter nøye overveielse av skadegrad, pasientens initiale fysiologiske status og respons på resuscitering. ETC benyttes hos den stabile traumepasienten med lav eller moderat skadegrad. DCO benyttes alltid for bruddstabilisering hos den ustabile pasienten, og vurderes hos stabile pasienter med alvorlig hode- eller thoraxskade, og/eller ISS>40

 

Referanser
1. Giannoudis PV. Surgical priorities in damage control in polytrauma. J Bone Joint Surg Br 2003; 85: 478-83.
2. Austin RT. Meurice Sinclair CMG: a great benefactor of the wounded of the First World War. Injury 2009; 40 :567-70.
3. Bradford DS, Foster RR, Nossel HL. Coagulation alterations, hypoxemia, and fat embolism in fracture patients. J Trauma 1970; 10: 307-21.
4. Renne J, Wuthier R, House E, Cancro JC, Hoaglund FT. Fat macroglobulemia caused by fractures or total hip replacement. J Bone Joint Surg Am1978;60: 613-8.
5. Reynolds MA, Richardson JD, Spain DA, Seligson D, Wilson MA, Miller FB. Is the timing of fracture fixation important for the patient with multiple trauma? Ann Surg 1995; 222: 470-8.
6. Mueller ME, Allgoewer M, Schneider R, Willenegger H, editors. Manual of osteosynthesis. Berlin, etc: Springer Verlag; 1970.
7. Riska EB, von Bonsdorff H, Hakkinen S, Jaroma H, Kiviluoto O, Paavilainen T. Primary operative fixation of long bone fractures in patients with multiple injuries. J Trauma 1977; 17: 111-21.
8. Goris RJ, Gimbrere JS, van Niekerk JL, Schoots FJ, Booy LH. Early osteosynthesis and prophylactic mechanical ventilation in the multitrauma patient. J Trauma1982; 22: 895-903.
9. Goris RJ, Gimbrere JS, van Niekerk JL, Schoots FJ, Booy LH. Improved survival of multiply injured patients by early internal fixation and prophylactic mechanical ventilation. Injury 1982;14: 39-43.
10. Johnson KD, Cadambi A, Seibert GB. Incidence of adult respiratory distress syndrome in patients with multiple musculoskeletal injuries: effect of early operative stabilization of fractures. J Trauma 1985; 25: 375-84.
11. Bone LB, Johnson KD, Weigelt J, Scheinberg R. Early versus delayed stabilization of femoral fractures. A prospective randomized study. J Bone Joint Surg Am 1989; 71: 336-40.
12. Ecke H, Faupel L, Quoika P. Considerations on the time of surgery of femoral fractures. Unfallchirurgie1985; 11: 89-93.
13. Boulanger BR, Stephen D, Brenneman FD. Thoracic trauma and early intramedullary nailing of femur

fractures: are we doing harm? J Trauma 1997; 43: 24-8.
14. Pape HC, Auf&#39m&#39Kolk M, Paffrath T, Regel G, Sturm JA, Tscherne H. Primary intramedullary femur fixation in multiple trauma patients with associated lung contusion–a cause of posttraumatic ARDS? J Trauma1993; 34: 540-7.
15. Charash WE, Fabian TC, Croce MA. Delayed surgical fixation of femur fractures is a risk factor for pulmonary failure independent of thoracic trauma. J Trauma 1994; 37: 667-72.
16. Pape HC, Regel G, Dwenger A, Krumm K, Schweitzer G, Krettek C, et al. Influences of different methods of intramedullary femoral nailing on lung function in patients with multiple trauma. J Trauma 1993; 35: 709-16.
17. Keel M, Trentz O. Pathophysiology of polytrauma. Injury 2005; 36(6): 691-709.
18. Rotstein OD. Modeling the two-hit hypothesis for evaluating strategies to prevent organ injury after shock/resuscitation. J Trauma 2003; 54: S203-6.
19. Scalea TM, Boswell SA, Scott JD, Mitchell KA, Kramer ME, Pollak AN. External fixation as a bridge to intramedullary nailing for patients with multiple injuries and with femur fractures: damage control orthopedics. J Trauma 2000; 48: 613-21.
20. Nast-Kolb D, Ruchholtz S, Waydhas C, Taeger G. Management of polytrauma. Chirurg 2006; 77(9): 861-72.
21. Olson SA. Pulmonary aspects of treatment of long bone fractures in the polytrauma patient. Clin Orthop Relat Res 2004; 422: 66-70.
22. Schulman AM, Claridge JA, Carr G, Diesen DL, Young JS. Predictors of patients who will develop prolonged occult hypoperfusion following blunt trauma. J Trauma 2004 ; 57: 795-800.
23. Meregalli A, Oliveira RP, Friedman G. Occult hypoperfusion is associated with increased mortality in hemodynamically stable, high-risk, surgical patients. Crit Care 2004; 8: R60-5.
24. Crowl AC, Young JS, Kahler DM, Claridge JA, Chrzanowski DS, Pomphrey M. Occult hypoperfusion is associated with increased morbidity in patients undergoing early femur fracture fixation. J Trauma 2000; 48: 260-7.

25. Morshed S, Miclau T, 3rd, Bembom O, Cohen M, Knudson MM, Colford JM, Jr. Delayed internal fixation of femoral shaft fracture reduces mortality among patients with multisystem trauma. J Bone Joint Surg Am 2009; 91: 3-13.
26. Jaicks RR, Cohn SM, Moller BA. Early fracture fixation may be deleterious after head injury. J Trauma 1997; 42: 1-5.
27. Kalb DC, Ney AL, Rodriguez JL, Jacobs DM, Van Camp JM, Zera RT, et al. Assessment of the relationship between timing of fixation of the fracture and secondary brain injury in patients with multiple trauma. Surgery 1998; 124: 739-44.
28. Bhandari M, Guyatt GH, Khera V, Kulkarni AV, Sprague S, Schemitsch EH. Operative management of lower extremity fractures in patients with head injuries. Clin Orthop Relat Res 2003; 407: 187-98.
29. Giannoudis PV, Veysi VT, Pape HC, Krettek C, Smith MR. When should we operate on major fractures in patients with severe head injuries? Am J Surg 2002;183: 261-7.
30. Flierl MA, Stoneback JW, Beauchamp KM, Hak DJ, Morgan SJ, Smith WR, et al. Femur shaft fracture fixation in head-injured patients: when is the right time? J Orthop Trauma 2010;24: 107-14.
31. Pape HC, van Griensven M, Rice J, Gansslen A, Hildebrand F, Zech S, et al. Major secondary surgery in blunt trauma patients and perioperative cytokine liberation: determination of the clinical relevance of biochemical markers. J Trauma 2001; 50: 989-1000.
32. Bhandari M, Zlowodzki M, Tornetta P, 3rd, Schmidt A, Templeman DC. Intramedullary nailing following external fixation in femoral and tibial shaft fractures. J Orthop Trauma 2005;19:140-4.
33. Moore EE, Burch JM, Franciose RJ, Offner PJ, Biffl WL. Staged physiologic restoration and damage control surgery. World J Surg 1998; 22: 1184-90.
34. Pape HC, Tscherne H. Early definitive fracture fixation, pulmonary function and systemic effects. In: Baue AE, Faist E, Fry M, editors. Multiple organ failure. New York: Springer Verlag; 2000. p. 279-90.
35. Pape HC, Giannoudis P, Krettek C. The timing of fracture treatment in polytrauma patients: relevance of damage control orthopedic surgery. Am J Surg 2002;183: 622-9.